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Bottle-brush polymers as an intermediate between star and cylindrical polymers
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~Received 25 February 2003; revised manuscript received 23 June 2003; published 18 September 2003!

We present a theoretical study of a single bottle-brush molecule, which consists of multiarmed polymer stars
grafted densely onto a stiff backbone. Mean-field approximation and a variational approach are used to calcu-
late the dominant trajectories of the grafted chains, the shape of the molecule, and the segment density
distribution around the backbone. All these properties are calculated for an arbitrary relationship between the
size of the backbone and that of a grafted star. Hence cylindrical comb copolymer brushes and spherically
symmetric polymer stars are considered as the limiting cases of the present problem.
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I. INTRODUCTION

In this paper, we carry out a theoretical investigation
cylindrical comb copolymer brushes or bottle-brush m
ecules@1–9#. We assume that such molecules are compo
of multi-armed polymer stars, grafted densely onto a rigid
flexible backbone. In our previous work@9#, we considered
the particular case of a flexible backbone and side chain
the same chemical composition. We showed that, in the p
ence of excluded volume interactions, a bottle-brush m
ecule can be found in one of the three conformational sta
depending on the backbone’s molecular weight. Here
briefly summarize the results obtained in Ref.@9#.

First, let us consider a backbone of very low molecu
weight, so that its lengthL is much shorter than the size of
grafted star. In this case, all the side chains in a bottle-br
molecule are virtually grafted onto the same point, and
molecule appears to be a single polymer star. The numbe
arms in such a star is given by the total number of the gra
chains, and these arms are swollen uniformly in all dir
tions. Thus, forL→0 the bottle-brush molecule is found in
spherically symmetric conformation. As the backbone len
L grows but remains smaller than a certain crossover va
Lc , the swelling of the side chains increases and eventu
reaches a plateau atL;Lc . At the same time, in the presenc
of excluded volume interactions, the grafted chains try
avoid strong overlapping. This leads to a large increase in
stiffness of the backbone, so that its linear sizeL grows
proportionally to the molecular weight. Consequently, forL
.Lc the bottle-brush molecule acquires the shape of a l
stiff cylinder, whose diameter is roughly given by the ma
mum size of the grafted chains. The critical backbone sizeLc
marks a crossover between spherical and cylindrical sym
tries of a bottle-brush molecule. When the size of the ba
bone is very large, i.e.,L@Lc , the grafted chains can n
longer restrict the backbone’s folding and it adopts a sph
cally symmetric coil-like conformation.

In this paper, we present a quantitative study of the c
formational crossover which occurs at the backbone s
L;Lc . We assume that the backbone’s molecular weigh
not particularly high, and so the backbone itself can be m
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eled as a~infinitely thin! stiff rod. On the other hand, we d
not make any assumptions regarding the relationship
tweenL and the linear sizeRg of a grafted chain. In fact,
Lc;Rg , and it is the ratioL/Rg which governs the crossove
between the spherical (L/Rg!1) and cylindrical (L/Rg
@1) conformations of a bottle-brush molecule. The polym
brushes of different symmetries are clearly described by
ferent scaling laws, and it is interesting to study how the
laws transform into each other as the parameterL/Rg
changes. Herein, in order to study the transformation of
scaling laws, we consider a single bottle-brush molecule w
the ratioL/Rg!1. If we probe such a molecule very near i
backbone, the influence of the backbone ends can be
glected and the molecule appears to be infinitely long. T
implies that, in the close vicinity of the backbone, a bott
brush molecule is described by the scaling relationsh
which are characteristic of cylindrical symmetry. Howeve
at large distances from the backbone, the backbone’s lin
sizeL appears to be negligibly small and we should find t
scaling relationships of a spherically symmetric polymer s

Our analysis is largely based on using the variational
proach, which was suggested in Ref.@4# to calculate the
properties of the planar, spherical, and infinitely long cyl
drical brushes. We generalize this approach to the case w
the backbone sizeL is taken to be arbitrary. In the following
sections, we give a detailed description of the examin
bottle-brush molecule and calculate its properties such as
segment density distribution around the backbone, the do
nant trajectories of the grafted chains, and the molecu
shape.

II. DESCRIPTION OF THE MODEL AND THE FREE
ENERGY FUNCTIONAL

In this work we consider a bottle-brush molecule whi
consists ofM stars, each containingf flexible chains of
lengthN, grafted regularly onto a stiff backbone of lengthL
~see Fig. 1 in Ref.@9#!. We assume that the stars are graft
very densely, so that the interstar spacingd5L/(M21) is
much smaller than the size of the backboneL. The condition
d!L implies high segment densities inside a polymer bru
which allows us to treat the problem within a mean-fie
approximation.

It is convenient to introduce the cylindrical coordina
©2003 The American Physical Society03-1
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system$r,z,f%, where axisz is directed along the backbon
@see Fig. 1~a!#. Due to symmetry, we do not need to consid
the angle coordinatef and the problem becomes two dime
sional. In this context, the variational approach amounts
writing down the molecule’s free energy as a functional
two independent functions of two variables and minimizi
it with respect to these functions. A possible choice for
independent functions is the dominant trajectories of gra
chains$r5 f 1(z0 ,t),z5 f 2(z0 ,t)%, wherez0 and t stand, re-
spectively, for the grafting point and the segment numbe
a given chain@Fig. 1~a!#. Alternatively, we can work with the
space fieldsz05 f 3(r,z) and t5 f 4(r,z), which are defined
as the functions inverse tof 1(z0 ,t) and f 2(z0 ,t). In the fol-
lowing analysis, we will require all four functions.

The molecule’s elastic free energy is expressed strai
forwardly in terms of the chains’ dominant trajectories,

Fel5
3

2a2

f

dE2L/2

L/2

dz0E
0

N

dtF S ] f 1

]t D 2

1S ] f 2

]t D 2G , ~1!

FIG. 1. Illustration of the cylindrical$r,z% and angle$a1 ,a2%
coordinate systems, introduced in this paper. Note that the infi
half plane$r.0,z% is transformed into the finite trianglea11a2

<p, shown in~b!. The sidea250 (a150) of this triangle repre-
sents the immediate vicinity of the upper~lower! end of the back-
bone, while the diagonala11a25p corresponds to infinity in the
half plane$r.0,z%.
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wherea denotes the segment size. Sinced/L!1, in Eq. ~1!
we substituted the summation over all side chains by
integral overz0. Within a mean-field approximation, the in
teraction part of the free energy reads

Fint5
ve

2 E dzE drn2~r,z!2pr, ~2!

where ve is the excluded volume parameter andn(r,z)
stands for the segment density distribution around the ba
bone. We can calculate this distribution by choosing an
ementary volume inside the polymer brush and counting
number of segments inside it. For simplicity, we assume t
all the free ends are excluded from the brush’s interior, wh
represents a natural extension of the Alexander–de Ge
approximation@10# used for a planar geometry. The resultin
expression forn(r,z) is found to be proportional to the Jaco
bian

D~r,z!5
] f 3

]z

] f 4

]r
2

] f 3

]r

] f 4

]z
, ~3!

namely,

n~r,z!5
f

d

D~r,z!

2pr
. ~4!

Equation~4! can also be expressed in terms of the variab
z0 and t,

n~z0 ,t !5
f

d

1

2p f 1~z0 ,t !D21~z0 ,t !
, ~5!

where

D21~z0 ,t !5
] f 1

]t

] f 2

]z0
2

] f 1

]z0

] f 2

]t
. ~6!

Clearly, the JacobianD21(z0 ,t) is reciprocal toD(r,z), i.e.,

DD2151. ~7!

Combining Eqs.~1!–~6! provides us with an expression fo
the total free energy as a functional off 1 and f 2,

F@ f 1 , f 2#5E
2L/2

L/2

dz0E
0

N

dtH 3

2a2

f

d F S ] f 1

]t D 2

1S ] f 2

]t D 2G
1

ve

2 S f

dD 2 1

2p f 1D21
J . ~8!

III. THE EULER-LAGRANGE EQUATIONS FOR THE
TRAJECTORIES OF POLYMER CHAINS

A. Derivation of the Euler-Lagrange equations

Minimizing the free energy functional of Eq.~8! with re-
spect to functionsf 1 and f 2, we obtain a system of two
partial differential equations which determine the domina
trajectories of grafted chains,

te
3-2
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]2f 1

]t2
1

1

D21f 1
2

1
1

D21
3 f 1

S ]D21

]t

] f 2

]z0
2

]D21

]z0

] f 2

]t D50,

]2f 2

]t2
2

1

D21
3 f 1

S ]D21

]t

] f 1

]z0
2

]D21

]z0

] f 1

]t D50. ~9!

When deriving these equations, we have made the follow
changes of variables:

f 1→ f 1l , f 2→ f 2l , r→r l , z→zl, n→nl23, ~10!

where the length scalel is given by

l 5S 1

6p
vea

2
f

dD 1/4

. ~11!

Substituting Eq.~10! into Eqs.~3!–~6! yields the following
expressions for the dimensionless density of polymer s
ments:

n5
D

r
5

1

f 1D21
. ~12!

The physical meaning of Eqs.~9! becomes transparent if w
rewrite these equations using the relationships

] f 1

]t
5D21

] f 3

]z
,

] f 1

]z0
52D21

] f 4

]z
,

] f 2

]t
52D21

] f 3

]r
,

] f 2

]z0
5D21

] f 4

]r
, ~13!

and the general rules of partial differentiation. We find

]2f 1

]t2
2

]

]r S 1

f 1D21
D50,

]2f 2

]t2
2

]

]z S 1

f 1D21
D50, ~14!

or, in view of Eq.~12!,

]2f 1

]t2
2

]

]r
n~r,z!50,

]2f 2

]t2
2

]

]z
n~r,z!50. ~15!

Thus, Eqs.~9! are equivalent to the Euler-Lagrange equ
tions describing the motion of a classical particle in the
ternal fieldfext(r,z)[2n(r,z). However, in the polymer
case,n(r,z) corresponds to the self-consistent~and not to
the external! field, i.e., the field which is itself determined b
the trajectories of the grafted chains.

A simple and useful relationship for the segment dens
distributionn(r,z) can be obtained by substituting Eqs.~15!
into the following very general law of partial differentiation
03180
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]

]t
n~z0 ,t !5

] f 1

]t

]

]r
n~r,z!1

] f 2

]t

]

]z
n~r,z!. ~16!

We obtain

]

]t F1

2 S ] f 1

]t D 2

1
1

2 S ] f 2

]t D 2

2n~z0 ,t !G50, ~17!

so that the combination in square brackets remains cons
along the chain trajectory. Note that, within the particle fo
mulation of the problem, Eq.~17! corresponds to the energ
conservation law. We assume that the stretching of chain
zero when the segment densityn vanishes, which yields

n5
1

2 F S ] f 1

]t D 2

1
1

2 S ] f 2

]t D 2G . ~18!

Equations~15! and ~18!, the boundary conditions

f 1~z0,0!50, f 2~z0,0!5z0 , ~19!

as well as some symmetry restrictions determine uniqu
the dominant trajectories of the grafted chains.

B. Example: Solution of the Euler-Lagrange equations in the
case of infinitely long cylindrical brush

For an infinitely long cylindrical brush, the problem be
comes one dimensional and we can write

f 1~z0 ,t !5 f 1~ t !, f 2~z0 ,t !5z0 . ~20!

Combining Eqs.~12!, ~18!, and~20! results in the nonlinear
differential equation for the functionf 1(t),

S f 1

d f1

dt D 21

5
1

2 S d f1

dt D 2

, ~21!

whose solution is uniquely defined and reads

f 1~ t !5
2

3
23/431/4t3/4. ~22!

Furthermore, we find for the segment density distribution

n5S f 1

d f1

dt D 21

5
A6

4
t21/25

1

2
22/3r22/3. ~23!

This simple example shows that, within the present
proach, the trajectories of all grafted chains, as well as
segment density distribution, are independent of the ch
length N. However, we need to knowN in order to specify
the widthr* of a polymer brush and the total segment de
sity n* at its surface. From Eqs.~22! and ~23!, we get

r* 5
2

3
23/431/4N3/4, ~24!

n* 5
A6

4
N21/2. ~25!
3-3
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We stress that the Alexander–de Gennes approxima
yields the nonzero valuen* of the segment density at th
surface of a polymer brush. Moreover, according to Eq.~18!,
the same holds for the stretching of chains at their free e
This is, clearly, an artifact of the present approach. We
lieve, however, that if the degree of polymerizationN of the
grafted chains is high, there is an extensive region in
brush’s interior where Eqs.~24! and ~25! are valid. In other
words, we assume that the analytical prefactors that m
appear in the above equations in order to satisfy the co
tion of continuously vanishing segment density will rema
localized at the surface. The great advantage of such an
proach is that it allows us to describe the polymer brus
of all sizes with only one set of equations and bound
conditions.

IV. OTHER REPRESENTATIONS OF THE EULER-
LAGRANGE EQUATIONS

A. Cylindrical coordinates r and z

For the purpose of solving the equations of motion, d
rived in the preceding section, it seems more convenien
work with the functionsf 3(r,z) and f 4(r,z). In this case,
we have in place of Eqs.~15! and ~18!

]

]z S x1

n D1
]

]r S x2

n D50,

]x2

]z
2

]x1

]r
2

x1

r
50,

n35
1

2
~x1

21x2
2!, ~26!

where new functionsx1(r,z) and x2(r,z) have been intro-
duced,

x1~r,z!5
1

r

] f 3

]z
, x2~r,z!5

1

r

] f 3

]r
. ~27!

The first and the third of Eqs.~26! are derived in Appendix
A, whereas the second equation points to the fact that fu
tions x1 and x2 are not independent@cf. Eq. ~27!#. The
boundary condition to Eqs.~26! follows straightforwardly
from the definition off 3 @recall f 3(r,z)[z0] and reads

x1~r→0,z!5
Q~L/22uzu!

r
, ~28!

whereQ(z) is the Heaviside step function, defined as ze
for z,0, 1 for z.0, and not defined atz50. Once Eqs.
~26! have been solved andf 3 is known, f 4 is found as a
solution to the linear partial differential equation@see Eq.
~12!#,

D~r,z!5rn~r,z!, ~29!

whereD(r,z) is given by Eq.~3!. Together,f 3 and f 4 deter-
mine implicitly the dominant trajectories of side chains.
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addition, we note that, as already shown for the case o
inifinitely long cylindrical brush, the segment density dist
bution n is found to be independent off 4, i.e., of the chain
length N. ~The discussion of this matter is presented
Sec. III B.!

B. Angle coordinatesa1 and a2

Equations~26! represent a system of nontrivial partial di
ferential equations which can be solved only numerically.
order to simplify the numerical calculations, we introdu
the angle coordinatesa1 anda2 @see Fig. 1~a!#,

tana15
r

L/22z
, tana25

r

L/21z
, ~30!

so that we can perform all integrations within the finite t
anglea11a2<p @Fig. 1~b!#. Furthermore, defining the new
functionsF(a1 ,a2), R(a1 ,a2) andg(a1 ,a2), such that

] f 3

]z
5R cosF,

] f 3

]r
5R sinF,

f 4~r,z!5
1

21/3
r4/3g~a1 ,a2!, ~31!

enables us to derive the universal Euler-Lagrange equat
which are independent of any length scales. Substituting E
~30! and ~31! into Eqs.~26!, we find

sina1

] ln R

]a1
sin~F1a1!1sina2

] ln R

]a2
sin~F2a2!

13 sina1

]F

]a1
cos~F1a1!13 sina2

]F

]a2
cos~F2a2!

2sinF50,

sina1

] ln R

]a1
cos~F1a1!1sina2

] ln R

]a2
cos~F2a2!

2sina1

]F

]a1
sin~F1a1!2sina2

]F

]a2
sin~F2a2!50,

n35
1

2r2
R2. ~32!

Equations ~32! include two partial differential equation
~PDEs! that must be solved simultaneously to yieldF and
R̄5 ln R. Note that both PDEs are linear with respect toR̄,
which significantly simplifies their solution. Besides, we o
tain from Eq.~29!,

4

3
g cosF1sina1

]g

]a1
cos~F1a1!1sina2

]g

]a2
cos~F2a2!

2R21/350. ~33!

The corresponding boundary conditions to Eqs.~32! and~33!
read
3-4
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F~0,0!50, R̄~0,0!50, g~0,0!5
3

4
. ~34!

V. LINEARIZED EQUATIONS: SOLUTION AND
DISCUSSION OF THE RESULTS

Equations~26! can be noticeably simplified if we suppos
that the dominant trajectories of chains are everywhere
pendicular to a surface of constant densityn(r,z)5n0. Ana-
lytically, this condition can be expressed in the form

]n

]r

] f 3

]r
1

]n

]z

] f 3

]z
50. ~35!

Substituting Eq.~35! into the first of Eqs.~26!, as well as
taking up the second of these equations, we arrive at
system of two linear partial differential equations with r
spect to functionsx1(r,z) andx2(r,z),

]x1

]z
1

]x2

]r
50,

]x2

]z
2

]x1

]r
5

x1

r
. ~36!

The solution to Eqs.~36! under the boundary condition o
Eq. ~28! reads

x1~r,z!5
1

2r F z11

Ar21~z11!2
1

12z

Ar21~12z!2G ,

x2~r,z!5
1

2 F 1

Ar21~z11!2
2

1

Ar21~12z!2G , ~37!

and

f 3~r,z!5
1

2
@Ar21~z11!22Ar21~12z!2#. ~38!

Note that in the above equations, and everywhere in the
ther analysis, we set the half-length of the backbone equa
one, i.e.,L/2[1. Equation~38! determines the dominant tra
jectories of grafted chains via the relationshipf 3(r,z)5z0,
and we have

z~r,z0!5z0A11
r2

12z0
2
. ~39!

As shown in Fig. 2, the trajectories of all but the cent
chains~i.e., grafted atz050) are curved outwards from th
center of the molecule, this curvature being stronger
those chains that are grafted closer to the ends of the b
bone. Due to the bending of chains, the segment den
inside a polymer brush is lowered, so is the interaction p
of the free energy. Figure 3 shows the three-dimensio
graph of the segment density distributionn(r,z) as it is
given by the last of Eqs.~26!. We note that the segmen
density diverges in the immediate vicinity of the backbon
03180
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Along the line of a central chain, that is the linez50, the
segment density distributionn(r,z) has the form

n~r!5
1

@2r2~11r2!#1/3
. ~40!

Equation~40! reveals the following power law asymptotics

n~r!;H r22/3, r!1

r24/3, r@1,
~41!

FIG. 2. The dominant trajectories of chains with grafting poin
z050.3, 0.6, and 0.9~dashed lines!, and surfaces of constant den
sity ~solid lines!, as obtained from the linearized Euler-Lagran
equations. The surfaces of constant density are chosen so as to
the following maximum values of coordinater: ~a! rmax50.2 and
1, ~b! rmax51 and 5.
3-5
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which are characteristic, respectively, of cylindrical@cf. Eq.
~23!# and spherical polymer brushes@4#.

The field f 4(r,z) is most easily calculated with the he
of functionsF(a1 ,a2), R(a1 ,a2), andg(a1 ,a2), defined
in Eq. ~31!. Rewriting Eqs.~37! in the angle coordinatesa1
anda2, we find

F~a1 ,a2!5
a22a1

2
, R~a1 ,a2!5cosS a21a1

2 D .

~42!

Note that, within the approximations made, the functio
F(a1 ,a2) andR(a1 ,a2) are analytic everywhere in the tr
angle a11a2<p. The function g(a1 ,a2) is found as a
unique~numerical! solution to Eqs.~33!, ~34! and~42!. If N
is the degree of polymerization of side chains in a bot
brush molecule, the resulting fieldf 4(r,z) determines
the shape of the molecule’s surface via the relations
f 4(r,z)5N. In the special case ofa15a2, the function
g(a1 ,a2) admits the analytic representation,

g~a1!5cot4/3a1E
0

a1
sin1/3x cos28/3x dx. ~43!

Solving the equation

1

21/3
Rg

4/3g„arctan~Rg!…5N, ~44!

whereg is given by Eq.~43!, we obtain the linear sizeRg of
a central chain as a function ofN. The resulting dependenc
Rg(N) reveals two different scaling regimes that are clea
shown in Fig. 4,

Rg;H N3/4, N!1

N3/5, N@1.
~45!

FIG. 3. The segment density distributionn(r,z) obtained from
the linearized Euler-Lagrange equations; note thatn(r,z) diverges
whenr→0 andz6L/2<0.
03180
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These scaling relationships are identical to those that h
been obtained individually for cylindrical@cf. Eq. ~22!# and
spherical polymer brushes@4#. Recall that the half length o
the backbone is set everywhere to 1, so, in fact,N substitutes
for the combination of quantitiesN(L/2)24/3. Hence, in the
present notation, the values ofN may be both small and larg
~see also discussion below!.

Here we do not present the complete results of the
merical solution forg(a1 ,a2) and f 4(r,z). According to
these results, the shape of a bottle-brush molecule cha
from a prolonged cylinder whenN!1 to almost a sphere
when N@1. A similar change of shape is observed for
surface of constant densityn(r,z)5n0, when the value of
parametern0 is decreased. Examples of such surfaces
shown in Fig. 2 for three different values ofn0 that corre-
spond toRg50.2, 1, and 5. Let us stress again that, if t
half length of the backbone does not equal 1, we must
placeN with the combination of parametersN(L/2)24/3. The
latter can be presented in the form of the ratio (L/Lc)

24/3,
whereLc;N3/4. As we already know, the transverse sizeRg
of a cylindrical polymer brush obeys the same scaling as
parameterLc , namely, Rg;N3/4. Hence, this is the ratio
L/Rg which governs the crossover between the cylindri
and the spherical conformations of a bottle-brush molecu

VI. SOME COMMENTS ON THE NONLINEAR
EQUATIONS

In the preceding section, we succeeded in finding an
proximate solution to the Euler-Lagrange equations wh
gave a satisfactory description of the examined crossover
find this approximate solution, we made an assumption
the dominant trajectories of chains are everywhere perp
dicular to a surface of constant density. Such an assump
is, obviously, valid for infinitely long cylindrical brushes, a
well as for spherically symmetric polymer stars. In the ca
of a bottle-brush molecule, we expect the angleU between
the trajectories of grafted chains and any surface of cons

FIG. 4. Double logarithmic plot of the end-to-end distanceRg of
a central chain as a function of the degree of polymerizationN
~solid line!. The dashed liney50.75x10.39 and the dotted liney
50.6x10.45 correspond, respectively, to the scaling limits of c
lindrical and spherical polymer brushes.
3-6
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density to be approximately 90°~1! in the immediate vicinity
of the backbonebut not very close to its ends, where th
molecule’s structure is similar to that of an infinitely lon
cylindrical brush and~2! anywhere far from the backbone
where the molecule’s structure becomes spherically symm
ric. To substantiate this quantitatively, we calculated cosU,

cosU5

S ]n

]r

] f 3

]r
1

]n

]z

] f 3

]z
D

AS ]n

]r
D 2

1S ]n

]z
D 2AS ] f 3

]r
D 2

1S ] f 3

]z
D 2

,

~46!

using Eqs.~37! and the last of Eqs.~26!. The results are
presented in Fig. 5 for three different values ofr, namely,
r50.01, 0.1, and 1. We see that, whenr→0, the value of
cosU deviates from zero only in the immediate vicinity o
the backbone ends.~Note that the maximum value of cosU
is 0.316 which yields the minimum value ofU of approxi-
mately 72°.! When r is increased, the maximum value o
cosU decreases, as the shape of a bottle-brush molecule
comes more spherical.

Thus, the linearized Euler-Lagrange equations need to
corrected only near the backbone, i.e., whenr!1. As shown
in Fig. 1, the angle coordinatesa1 anda2 become infinitely
small if r→0 and uz6L/2uÞ0. When bothr and uz2L/2u
tend to zero, the value ofa1 remains finite, whereas
a250, and determines the direction in which the upper e
of the backbone is approached:a1P@0,p#. Similarly, for the
lower end of the backbone we havea150 anda2P@0,p#.
We see that, for each point in the vicinity of the backbo
eithera1 or a2 is very small. Equations~32! and~33! can be
significantly simplified if we put one of the angle coordinat
to zero. For instance, fora250 we have

]F

]a1
5

sinF

sina1

cos~F1a1!

@21cos 2~F1a1!#
,

FIG. 5. Angle U between the dominant trajectories of chai
and a surface of constant density, as a function ofz, and for three
different values ofr: r50.01 ~solid line!, 0.1 ~dashed line!, and 1
~dotted line!.
03180
t-

e-

be

d

,

] ln R

]a1
5tan~F1a1!

]F

]a1
,

4

3
g cosF1sina1

]g

]a1
cos~F1a1!2R21/350. ~47!

In order to satisfy Eqs.~47! and the boundary conditions o
Eq. ~34!, functions F(a1,0), R(a1,0), and g(a1,0) must
have the following series expansions:

F5Ca1
1/31O~a1

5/3!,

R511
1

2
C2a1

2/31O~a1
4/3!,

g5
3

4
1

1

6
C2a1

2/31O~a1
4/3!. ~48!

In these expansions, the value of constantC, namely
C52221/3, is found from the condition that numerical inte
gration of the first of Eqs.~47! yields @cf. Eq. ~42!#

F~a1→p!52a1/2. ~49!

The functionsF(a1,0), R(a1,0), andg(a1,0), obtained by
numerical integration of Eqs.~47! under the boundary con
ditions of Eqs.~48!, are plotted in Fig. 6, where they are als
compared to the approximate results of the preceding sec
@11#. We see a significant quantitative discrepancy betw
the two sets of curves@which is not as striking for the curve
g(a1,0), compared in Fig. 6~c!, since they both were ob
tained by solving the same Eq.~33!#. Apart from the quanti-
tative differences, the exact solutionR(a1,0) shows a quali-
tatively new feature, namely, its maximum is positioned
a1Þ0 @see Fig. 6~b!#. Such a positioning of the maximum i
responsible for the appearance of the ‘‘ears’’ around the e
of the backbone in the segment density distributionn(r,z).
This is illustrated in Fig. 7 which presents a sketch of t
three-dimensional surfacen(r,z) ~cf. Fig. 3!. Below, we ex-
plain how this surface was obtained.

Equations~48! can be generalized to the case of two va
ables so as to satisfy Eqs.~32! and~33!. We find the follow-
ing expansions forF(a1 ,a2) andR(a1 ,a2):

F5
22/3

2
a0

1/3f S a22a1

a11a2
D1O~a0

5/3!,

R511
21/3

4
a0

2/3f 2S a22a1

a11a2
D1O~a0

4/3!, ~50!

wherea05a11a2, andf (x) is some odd function ofx such
that f (1)51. The specific form of functionf should be de-
termined by the condition that numerical solution of Eq
~32!, under the boundary conditions of Eqs.~50!, agrees with
the results of Eq.~42! whena0→p anda1, 2Þ0. However,
for technical reasons, we were not able to find such a s
tion and, hence, to determinef. Our algorithm for the self-
consistent numerical integration of Eqs.~32! is described in
Appendix B. It seems to be very sensitive to the bound
3-7
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conditions and, since we do not knowf a priori, it inevitably
breaks down at some point~generally, ata0.2.1–2.5), as
we move away from 0,a0!1 to larger values ofa0. We
note that we used the same algorithm in order to fi
g(a1 ,a2) in the preceding section, and we did not encoun
any problems in building the full numerical solution to E
~33!, whereF andR were given by Eq.~42!.

FIG. 6. Functions~a! F(a1,0), ~b! R(a1,0), and~c! g(a1,0)
found as a solution to the exact Euler-Lagrange equations~solid
lines!. The dashed lines stand for the approximate results given
Eqs.~33! and ~42!.
03180
d
r

In order to obtain a qualitatively valid solution to Eq
~32!, we may use the following approximate form ofF:

Fapp~a1 ,a2!5
a22a1

a11a2
F~a0,0!, ~51!

and simply calculateRapp(a1 ,a2) from the second of Eqs
~32!. It is straightforward to see thatFapp satisifes the first of
Eqs. ~50! with f (x)5x, as well as provides the correc
asymptotic behavior whena0→p @cf. Eq.~42!#. Besides, for
all those a0 — for which we were able to build a self
consistent solution to Eqs.~32!, under the condition tha
f (x)5x — the functionsF and R, resulting from such a
solution, were qualitatively very similar toFapp and Rapp.
Thus, the segment density distributionn(r,z) shown in Fig.
7 has been obtained fromRapp and the third of Eqs.~32!. Let
us stress that the effect of ‘‘ears’’ is independent of any s
cific form of f or Fapp, and is solely due to the maximum i
the exact dependenceR(a1,0) @see Fig. 6~b!#. However, the
correct specific form off is necessary to fulfill the condition
of spherical symmetry forR(a1 ,a2) when a0→p and
a1, 2Þ0, which is not satisfied byRapp.

Let us now comment on the following peculiarities of th
cylindrical polymer brushes of finite length. We know that,
a polymer brush withL→`, the trajectories of all chains ar
perpendicular to the line of the backbone. WhenL is finite,
the angle between the trajectory of a given chain and the
z may change depending on the chain’s grafting point. Th
in the central part of a polymer brush, the chains rem
perpendicular to the axisz (a1.0), while the chains grafted
near the backbone ends are almost parallel to it (a1.p). We
can study the properties of the mentioned chains by tak

y

FIG. 7. The segment density distributionn(r,z) found from the
nonlinear Euler-Lagrange equations. Note the new effect of ‘‘ea
around the ends of the backbone, which is missing in Fig. 3
appears due to the maximum in the exact dependenceR(a1,0),
shown in Fig. 6~b!.
3-8
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BOTTLE-BRUSH POLYMERS AS AN INTERMEDIATE . . . PHYSICAL REVIEW E 68, 031803 ~2003!
the relevant limits in the functionsR(a1,0) andg(a1,0). In
the limit a1→0, we haveR(a1,0)51 and g(a1,0)53/4
which result in

n~r,z!5
1

21/3
r22/3, f 4~r,z!5

3

4

1

21/3
r4/3. ~52!

Note that the exponents in Eqs.~52! correspond to the cylin-
drical symmetry, which is rather obvious since Eqs.~47! are
only valid near the backbone. In the opposite limita1→p,
the numerical integration yieldsR(a1,0)5C(p2a1) and
g(a1,0)53/4C21/3(p2a1)24/3, where C.1.086. This
leads to

n~r,z!5
C2/3

21/3
~z21!22/3, f 4~r,z!5

3

4

C21/3

21/3
~z21!4/3.

~53!

In the limits considered,r andz21 stand for the same quan
tity, namely the distance to the backboner t calculated along
the chain. Therefore, both Eqs.~52! and~53! can be rewritten
in the form

n~r t!.
1

21/3
r t

22/3, f 4~r t!.
3

4

1

21/3
r t

4/3. ~54!

The above scaling relationships have been obtained for
chains grafted either in the center of a polymer brush or n
the ends of its backbone. We assume, however, that Eqs.~54!
are also valid for all grafted chains. Then any surfa
f 4(r t)5t which consists of all segmentst can also be con-
sidered as a surface of constant densityn(r t)5n0. Clearly, if
r t is such thatt5N, the surface of constant density is ide
tical to the external surface of a polymer brush. According
Eqs.~54!, as well as computer simulations@12#, the polymer
chains in a bottle-brush molecule are all equally extend
This allows us to model the molecule’s surface as a pro
ellipsoid of the form

r2

Rg
2

1
z2

~11Rg!2
51, ~55!

where Rg denotes the linear size of a central chain~recall
L/2[1). Let us recall that Eqs.~54! were obtained in the
immediate vicinity of the backbone. However, the conc
sions drawn from them are automatically valid at large d
tances from the backbone, where a bottle-brush mole
becomes spherically symmetric. This leads us to believe
the results of the preceding paragraph, including Eq.~55!,
apply to any length scales inside a bottle-brush molecule

VII. CONCLUSION

We have presented a quantitative study of a single bo
brush molecule, which consists of a stiff backbone of len
L grafted densely with flexible polymer chains. Since t
grafted chains are strongly streched in the presence of
cluded volume interactions, we consider only their domin
03180
he
ar

e

o

d.
te

-
-
le
at

e-
h

x-
t

trajectories. Such dominant trajectories are found as a s
tion to the nonlinear Euler-Lagrange equations, result
from minimization of the free energy functional. If we a
sume that the trajectories of chains are everywhere per
dicular to a surface of constant~segment! density, the Euler-
Lagrange equations can be linearized and solved analytic
This assumption is valid everywhere except for the imme
ate vicinity of the backbone, where we have found a num
cal solution to the full nonlinear equations.

We have shown that the dominant trajectories of cha
are curved towards the ends of the backbone. Due to
bending of chains, the segment density in the center o
polymer brush is only 5.5% lower than that calculated n
the backbone ends@cf. the first of Eqs.~52! and~53!#. Also,
the stretching of the side chains was shown to be indep
dent of where exactly these chains are grafted. We belie
therefore, that all local properties of bottle-brush polyme
are fairly homogeneous. As a result of this homogeneity,
surface created by all segments with numbert is also a sur-
face of constant density. Apparently, ifN is the degree of
polymerization of side chains andt5N, the surface of con-
stant density is identical to the external surface of a polym
brush. The latter is found to have the shape of a pro
ellipsoid, which seems to be in agreement with experimen
data@13–15#.

Furthermore, we have discovered the elements of two
ferent symmetries in the structure of a single bottle-bru
molecule. We have shown that the trajectories of all cha
start perpendicular to the line of the backbone, which is d
tinctive of infinitely longcylindrical brushes. As the distanc
to the backbone increases, the chains begin to deviate f
their initial direction and the cylindrical structure is de
stroyed. If the distance to the backbone is very large,
trajectory of each chain represents a straight line whose s
is dependent on where the given chain is joined to the ba
bone. There is an equal number of straight lines headin
each direction, which corresponds to thespherically sym-
metric structure of a polymer star. We have determined
cylindrical and spherical limits for all local characteristics
bottle-brush molecules. The crossover between these li
occurs at the distances to the backbone comparable wit
sizeL, or for the segment numberst;L4/3. We note that the
resulting crossover regions are rather broad and, there
some knowledge of the full crossover functions is require
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APPENDIX A: REPRESENTING THE EULER-LAGRANGE
EQUATIONS IN CYLINDRICAL COORDINATES

In this appendix, we present the derivation of Eqs.~26! of
the main text. We start with the expression for the total s
ment densityn, given by Eq.~18!, and rewrite it using Eqs
~13!. We find
3-9
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n5
1

2 F S ] f 1

]t D 2

1S ] f 2

]t D 2G5
1

2
D21

2 F S ] f 3

]z D 2

1S ] f 3

]r D 2G
5

1

2
f 1

2D21
2 F 1

r2 S ] f 3

]z D 2

1
1

r2 S ] f 3

]r D 2G5
1

2n2
~x1

21x2
2!,

~A1!

and thus we have obtained the third of Eqs.~26!. Let us now
derive the first of these equations. Differentiating Eq.~18!
with respect toz0 yields

]

]z0
n~z0 ,t !5

] f 1

]t

]2f 1

]t]z0
1

] f 2

]t

]2f 2

]t]z0
, ~A2!

and, independently from Eq.~A2!, we find using the rules o
partial differentiation and Eqs.~15!,

]

]z0
n~z0 ,t !5

] f 1

]z0

]

]r
n~r,z!1

] f 2

]z0

]

]z
n~r,z!

5
] f 1

]z0

]2f 1

]t2
1

] f 2

]z0

]2f 2

]t2
. ~A3!

Subtracting Eq.~A2! from Eq. ~A3! and replacing the first-
order derivatives as prescribed by Eqs.~13!, we get

2S ]2f 1

]t2

] f 4

]z
1

]2f 1

]t]z0

] f 3

]z D 1S ]2f 2

]t2

] f 4

]r
1

]2f 2

]t]z0

] f 3

]r D 50,

~A4!

which, in turn, folds to give a fairly simple relationship,

2
]

]z S ] f 1

]t D1
]

]r S ] f 2

]t D50. ~A5!

Finally, combining Eqs.~A5! and ~13! yields

]

]z S D21

] f 3

]z D1
]

]r S D21

] f 3

]r D50. ~A6!

It is straightforward to see that Eq.~A6! is equivalent to the
first of Eqs.~26!. As to the second of Eqs.~26!, its origin is
explained in the main text.

APPENDIX B: NUMERICAL SOLUTION OF THE
NONLINEAR EQUATIONS

In this appendix, we present an algorithm to solve a fir
order partial differential equation depending ona1 and a2,
or a system of such equations. For the purpose of nume
integration, we employ the two-dimensional grid shown
Fig. 8. The number of grid pointsM is the same both fora1
anda2, and the incrementd5p/(M21). Each point on the
grid is defined by two indicesi and n, where i counts the
lines of constanta1 : a1 ( i ,n)5d( i 21) ; n, andn counts
the lines of constanta05a11a2 : a0 ( i ,n)5d(n21) ; i .
In order to build a complete numerical solution, we mo
step by step, from diagonaln21 to diagonaln, starting from
somen5n0. As an example, let us consider the first two
03180
t-

al

Eqs. ~32!. We can rewrite these equations in terms of fin
differences, which involves three grid points, as shown
Fig. 8. We have

K3@R̄ ~ i ,n!2R̄ ~ i 21,n21!#1K4@R̄~ i ,n!2R̄ ~ i ,n21!#

13K1@F ~ i ,n!2F ~ i 21,n21!#

13K2@F ~ i ,n!2F ~ i ,n21!#2d sin@F ~ i ,n!#50,

K1@R̄ ~ i ,n!2R̄ ~ i 21,n21!#1K2@R̄ ~ i ,n!2R̄ ~ i ,n21!#

2K3@F ~ i ,n!2F ~ i 21,n21!#

2K4@F ~ i ,n!2F ~ i ,n21!#50, ~B1!

where

K15sin@a1 ~ i ,n!#cos@F ~ i ,n!1a1 ~ i ,n!#,

K25sin@a2 ~ i ,n!#cos@F ~ i ,n!2a2 ~ i ,n!#,

K35sin@a1 ~ i ,n!#sin@F ~ i ,n!1a1 ~ i ,n!#,

K45sin@a2 ~ i ,n!#sin@F ~ i ,n!2a2 ~ i ,n!#. ~B2!

Equations~B1! can be solved with respect toF ( i ,n) and
R̄ ( i ,n). Thus, if the values ofF andR̄ are known on diag-
onal n21, they can also be determined at each point
diagonaln. As initial conditions, we need to know the corre
sponding values atn5n0.

Unfortunately, we were not able to build a complete s
lution to Eqs.~32!, using the algorithm described above. W
tend to think that this algorithm is very sensitive to the init
values ofF and R̄ which, in our case, we do not knowa
priori . Instead, we try to guess these initial values so as

FIG. 8. Two-dimensional grid used for the numerical integrati
of the nonlinear Euler-Lagrange equations.
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retrieve spherical symmetry whena0→p anda1, 2Þ0. Our
guesses are, obviously, not close enough to the true ans
and this gives rise to growing fluctuations at somen,M .
However, we were able to successfully implement t
,

l-

c

te

03180
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s

algorithm in order to find a solution to Eq.~33!, whereF and
R were given by Eq.~42!. In this case, we started with
n051 andg (1,1)53/4, and did not encounter any problem
in moving all the way up ton5M .
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